
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 4, Ver. II (Jul - Aug .2015), PP 28-34

www.iosrjournals.org

DOI: 10.9790/2834-10422834 www.iosrjournals.org 28 | Page

Synthesis of Data Encoded With Error Correcting Codes Using

BWA Architecture

Steffi Philip Mulamoottil
1
Dr.E.Nagabhooshanam

2
Nimmagadda Ravali

3

1.M.Tech VLSI System Design Student, Sridevi Womens Engineering College Hyderabad

2. HOD ECE Department ,Sridevi Womens Engineering College Hyderabad

3.Assistant Professor, Sridevi Womens Engineering College Hyderabad

I. Introduction
Data comparison is widely used in computing systems to perform many operations such as tag

matching in cache memory, virtual to physical address translation in TLB. Because of such prevalence it is

important to implement the comparison circuit with low hardware complexity. Data Fix has developed a series

of algorithms and programs that utilize token-based matching in conjunction with various fuzzy-matching

functions. For a given block of source data each token is compared to records from the target dataset. The data

comparison usually resides in the critical path of the components that are devised to increase system

performance. For example caches and TLBs whose outputs determine the flow of succeeding operations in a

pipeline. Therefore the circuit must be designed to have as low latency as possible as latency describes the time

interval between stimulation and response. Besides of not having low latency, the components will be

disqualified from serving as accelerators and overall performance of the whole system would be severely

deteriorated. Recently computers employ error correcting codes to protect data and improve reliability.

Complicated decoding procedure precede the data comparison which must elongates the critical path and

exacerbates the complexity overhead. Thus it seems to be harder to meet the above design constraints.

Numerous algorithms have been developed to allow for so-called ‘fuzzy’ matching, including soundex, NYSIIS,

Jaro-Winkler, and many different types of character transposition functions. While these approaches are useful

for matching specific fields they are not capable of accurately comparing larger blocks of data.

The most recent solution for matching problem is the direct compare method. This method encodes the

incoming data and then compared it with retrieved data that has been encoded as well. Therefore this method

eliminates the complicated decoding procedure from critical path as it is more complex and consumes more

time. While performing comparison method, it does not examine whether the retrieved data is exactly the same

as the incoming data. Instead, it checks if the retrieved data resides in the error correctable range of the

codeword corresponding to the incoming data. While performing checking, an additional circuit for computing

hamming distance is necessary. Hamming distance provides the number of different bits between two code

words and for computing hamming distance saturate adder is considered as a building block. In addition SA

forces its output not to be greater than the number of detectable errors by more than one. As ECC detects double

and corrects single bit error and is represented in a systematic form in which data and parity parts are completely

separated.

In this brief we renovate SA based direct compare architecture to reduce latency and hardware complexity by

resolving the above mentioned drawbacks. More specifically we consider the error correcting codes in

systematic form while designing the proposed architecture and provides a low complexity processing element

that computes the hamming distance faster. Therefore latency and hardware complexity are decreased when

compared with SA based architecture.

 The rest of the paper is organised as follows. Section 2 describes the previous works. Section 3

describes the proposed architecture and section 4 describes the evaluation part. Finally conclusion is described

in section 5.

II. Previous Works
This section describes the conventional decode and compare architecture and encode and compare

architecture based on the direct compare method. For the sake of concreteness, only tag matching in cache

memory is discussed in this brief, but the proposed architecture can be applied to similar applications without

loss of generality.

Synthesis Of Data Encoded With Error Correcting

DOI: 10.9790/2834-10422834 www.iosrjournals.org 29 | Page

Fig 1. (a) Decode-and-compare architecture and (b) encode-and-compare architecture.

A. Decode-and-compare architecture

In decode and compare architecture the n-bit retrieved code word is first decoded to extract the original

k-bit tag. The extracted k-bit tag is then compared with the k-bit tag field of the incoming address to determine

whether the tags are matched or not as shown in Fig. 1(a). .As the retrieved codeword should go through the

decoder before being compared with the incoming tag, the critical path is too long to be employed in a practical

cache system designed for high-speed access. Since the decoder is one of the most complicated processing

elements, in addition, the complexity overhead is not negligible.

B. Encode-and-Compare Architecture

Note that decoding is usually more complex and takes more time than encoding as it encompasses a

series of error detection or syndrome calculation, and error correction. The implementation results support the

claim. To resolve the drawbacks of the decode-and compare architecture, therefore, the decoding of a retrieved

codeword is replaced with the encoding of an incoming tag in the encode-and-compare architecture More

precisely, a k-bit incoming tag is first encoded to the corresponding n-bit codeword X and compared with an n-

bit retrieved codeword Y as shown in Fig. 1(b).

The comparison is to examine how many bits the two code words differ, not to check if the two code

words are exactly equal to each other. For this, we compute the Hamming distance d between the two code

words and classify the cases according to the range of d.

Let tmax and rmax denote the numbers of maximally correctable and detectable errors, respectively. The cases are

summarized as follows.

Condition Result

1)d=0 X matches Y exactly

2)0 ≤ d ≤ tmax X will match Y provided at the most tmax errors in Y are corrected

3)tmax < d ≤ rmax Y has detectable but uncorrectable errors.

4)rmax < d X does not match Y

Assuming that the incoming address has no errors, we can regard the two tags as matched if d is in

either the first or the second ranges. In this way, while maintaining the error-correcting capability, the

architecture can remove the decoder from its critical path at the cost of an encoder being newly introduced. Note

that the encoder is, in general, much simpler than the decoder, and thus the encoding cost is significantly less

than the decoding cost. Since the above method needs to compute the Hamming distance, presented a circuit

dedicated for the computation.

Fig 2. SA-based architecture supporting the direct compare method

Synthesis Of Data Encoded With Error Correcting

DOI: 10.9790/2834-10422834 www.iosrjournals.org 30 | Page

The circuit shown in Fig. 2 first performs XOR operations for every pair of bits in X and Y so as to

generate a vector representing the bitwise difference of the two code words. The following half adders (HAs)

are used to count the number of 1’s in two adjacent bits in the vector. The numbers of 1’s are accumulated by

passing through the following SA tree. In the SA tree, the accumulated value z is saturated to rmax + 1 if it

exceeds rmax. More precisely, given inputs x and y, z can be expressed as follows:

The final accumulated value indicates the range of d. As the compulsory saturation necessitates additional logic

circuitry, the complexity of a SA is higher than the conventional adder.

III. Butterfly Weight Accumulator (BWA) Architecture
This section describes a new architecture that can reduce the latency and complexity of the data

comparison by using the characteristics of systematic codes. In addition, a new processing element is presented

in this brief to reduce latency and complexity further

.

A. Datapath Design for Systematic Codes

In the SA-based architecture the comparison of two code words is invoked after the incoming tag is

encoded. Therefore, the critical path consists of a series of the encoding and the n-bit comparison as shown in

Fig. 3(a).

Fig. 3. Timing diagram of the tag match in (a) direct compare method and (b) proposed architecture.

However,did not consider the fact that, in practice, the ECC codeword is of a systematic form in which the data

and parity parts are completely separated as shown in Fig. 4.

Fig. 4. Systematic representation of an ECC codeword.

As the data part of a systematic codeword is exactly the same as the incoming tag field, it is

immediately available for comparison while the parity part becomes available only after the encoding is

completed. Grounded on this fact, the comparison of the k-bit tags can be started before the remaining (n–k)-bit

comparison of the parity bits. In the proposed architecture, therefore, the encoding process to generate the parity

bits from the incoming tag is performed in parallel with the tag comparison, reducing the overall latency as

shown in Fig. 3(b).

B. Architecture for Computing the Hamming Distance

The proposed architecture grounded on the data path design is shown in Fig. 5. The proposed

architecture contains multiple butterfly-formed weight accumulators (BWAs) proposed to improve the latency

and complexity of the Hamming distance computation.

Synthesis Of Data Encoded With Error Correcting

DOI: 10.9790/2834-10422834 www.iosrjournals.org 31 | Page

Fig.5 : Proposed architecture optimized for systematic code words

The basic function of the BWA is to count the number of 1’s among its input bits. It consists of

multiple stages of Half Adders as shown in Fig. 6(a), where each output bit of a HA is associated with a weight.

The HAs in a stage are connected in a butterfly form so as to accumulate the carry bits and the sum bits

of the upper stage separately. In other words, both inputs of a HA in a stage, except the first stage, are either

carry bits or sum bits computed in the upper stage. This connection method leads to a property that if an output

bit of a HA is set, the number of 1’s among the bits in the paths reaching the HA is equal to the weight of the

output bit. In Fig. 6(a), for example, if the carry bit of the gray-coloured HA is set, the number of 1’s among the

associated input bits, i.e., A, B, C, and D, is 2. At the last stage of Fig. 6(a), the number of 1’s among the input

bits, d, can be calculated as

Since what we need is not the precise Hamming distance but the range it belongs to, it is possible to simplify the

circuit. When rmax = 1, for example, two or more than two 1’s among the input bits can be regarded as the

same case that falls in the fourth range. In that case, we can replace several HAs with a simple OR-gate tree as

shown in Fig. 6(b). This is an advantage over the SA that resorts to the compulsory saturation expressed in (1).

Fig. 6. Proposed BWA. (a) General structure and (b) new structure revised for the matching of ECC-protected

data. Note that sum-bit lines are dotted for visibility

Synthesis Of Data Encoded With Error Correcting

DOI: 10.9790/2834-10422834 www.iosrjournals.org 32 | Page

Note that in Fig. 6, there is no overlap between any pair of two carry-bit lines or any pair of two sum-

bit lines. As the overlaps exist only between carry-bit lines and sum-bit lines, it is not hard to resolve overlaps in

the contemporary technology that provides multiple routing layers no matter how many bits a BWA takes. We

now explain the overall architecture in more detail. Each XOR stage in Fig. 5 generates the bitwise difference

vector for either data bits or parity bits, and the following processing elements count the number of 1’s in the

vector, i.e., the Hamming distance. Each BWA at the first level is in the revised form shown in Fig. 6(b), and

generates an output from the OR-gate tree and several weight bits from the HA trees. In the interconnection,

such outputs are fed into their associated processing elements at the second level. The output of the OR-gate tree

is connected to the subsequent OR-gate tree at the second level, and the remaining weight bits are connected to

the second level BWAs according to their weights. More precisely, the bits of weight w are connected to the

BWA responsible for w-weight inputs. Each BWA at the second level is associated with a weight of a power of

two that is less than or equal to Pmax, where Pmax is the largest power of two that is not greater than rmax + 1.

As the weight bits associated with the fourth range are all ORed in the revised BWAs, there is no need

to deal with the powers of two that are larger than Pmax. For example, let us consider a simple (8, 4) single-

error correction double-error detection code. The corresponding first and second level circuits are shown in Fig.

7. Note that the encoder and XOR banks are not drawn in Fig. 7 for the sake of simplicity.

Since rmax = 2, Pmax = 2 and there are only two BWAs dealing with weights 2 and 1 at the second level. As the

bits of weight 4 fall in the fourth range, they are ORed. The remaining bits associated with weight 2 or 1 are

connected to their corresponding BWAs. Note that the interconnection induces no hardware complexity, since it

can be achieved by a bunch of hard wiring. Taking the outputs of the preceding circuits, the decision unit finally

determines if the incoming tag matches the retrieved codeword by considering the four ranges of the Hamming

distance. The decision unit is in fact a combinational logic of which functionality is specified by a truth table

that takes the outputs of the preceding circuits as inputs. For the (8, 4) code that the corresponding first and

second level circuits are shown in Fig. 7, the truth table for the decision unit is described in Table I. Since U and

V cannot be set simultaneously, such cases are implicitly included in do not care terms in Table I.

Synthesis Of Data Encoded With Error Correcting

DOI: 10.9790/2834-10422834 www.iosrjournals.org 33 | Page

 C. General Expressions for the Complexity and the Latency
The complexity as well as the latency of combinational circuits heavily depends on the algorithm

employed. In addition, as the complexity and the latency are usually conflicting with each other, it is

unfortunately hard to derive an analytical and fully deterministic equation that shows the relationship between

the number of gates and the latency for the proposed architecture and also for the conventional SA-based

architecture. To circumvent the difficulty in analytical derivation, we present instead an expression that can be

used to estimate the complexity and the latency by employing some variables for the nondeterministic parts. The

complexity of the proposed architecture, C, can be expressed as

where CXOR, CENC, C2nd, CDU, and CBWA(n) are the complexities of XOR banks, an encoder, the second level

circuits, the decision unit, and a BWA for n inputs, respectively. Using the recurrence relation, CBWA(n) can be

calculated as

where the seed value, CBWA(1), is 0. Note that when a + b = c, CBWA(a) + CBWA(b) ≤ CBWA(c) holds for all

positive integers a, b, and c. Because of the inequality and the fact that an OR-gate tree for n inputs is always

simpler than a BWA for n inputs, both CBWA(k) + CBWA(n –k) and C2nd are bounded by CBWA(n). The latency of

the proposed architecture, L, can be expressed as

where LXOR, LENC, L2nd, LDU, and LBWA(n) are the latencies of an XOR bank, an encoder, the second

level circuits, the decision unit, and a BWA for n inputs, respectively. Note that the latencies of the OR-gate tree

and BWAs for x ≤ n inputs at the second level are all bounded by [log2 n]. As one of BWAs at the first level

finishes earlier than the other, some components at the second level may start earlier. Similarly, some BWAs or

the OR-gate tree at the second level may provide their output earlier to the decision unit so that the unit can

begin its operation without waiting for all of its inputs. In such cases, L2nd and LDU can be partially hidden by

the critical path of the preceding circuits, and L becomes shorter than the given expression.

IV. Proposed BWA Architecture

The above BWA architecture describes the operation of (8,4)code. The same architecture with some

extensions is used to built the proposed architecture. Proposed architecture describes the analysis of

(16,11),(24,18)and(40,33)code. The above mentioned (8,4) code takes only 8 bits of code words. Besides, the

proposed architecture increases the bit length of the code words so that we can process more information.

Fig 8(a): BWA For Parity of (16,11)code

Synthesis Of Data Encoded With Error Correcting

DOI: 10.9790/2834-10422834 www.iosrjournals.org 34 | Page

Fig 8(b) : BWA For Incoming tag of (16,11)code

The above figure shows the BWA architecture of (16,11) codeword with 11 bits of incoming tag information

and 5 bits of parity information. Likewise we can draw architecture for (24,18) and (40,33).

V. Evaluation
For a set of four codes including the (31,25) code,Table 2 shows the latencies and hardware

complexities resulting from three architectures:: 1)the decode-compare 2)the SA based direct compare and the

3) proposed ones. When measured the metrics at the gate level first and then implemented the circuits in CMOS

technology to provide more realistic results by deliberating some practical factors e.g. gate sizing and wiring

delays. The latency is measured from th time when the incoming address is completely encoded. As the critical

path starts from the arrival of the incoming address to a cache memory the encoding delay must be however

included in the latency computation . The latency values in Table 2 are all measured in this way .Besides critical

path delays in table 2 are obtained by performing post layout simulations and equivalent gate counts are

measured by counting a two –input NAND gate as one.

As shown in table 2 the proposed architecture is effective in reducing the latency as well as the

hardware complexity even with considering the practical factors .Note that the effectiveness of the proposed

architecture over the SA based one in shortening the latency gets larger as the size of the code word increases

.The reason is as follows .The latencies of the SA based architecture and the proposed one are dominated by

SAs and HAs respectively. As the bit width doubles atleast one more stages of the SAs or HAs needs to be

added.Sin ce the critical path of the HA consists of only one gate while that of SA has several gates,the

proposed architecture achieves lower latency than its SA based counterpart,especially for long codewords.

VI. Conclusion

To reduce latency and hardware complexity a new architecture has been presented in this brief for

matching the data protected with an ECC.The proposed architecture examines whether the incoming data

matches the stored data if a certain number of erroneous bits are corrected. To reduce latency the comparison of

the data is parallelised with the encoding process that generates parity information.In addition an efficient

processing architecture has been presented to further minimize the latency and complexity .The proposed

architecture is effective in reducing the latency as well as the complexity . Though this brief focuses oly on tag

matching in cache memory , the proposed method is applicable to diverse applications that need such

comparison.

