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I. Introduction 
Data comparison is widely used in computing systems to perform many operations such as tag 

matching in cache memory, virtual to physical address translation in TLB. Because of such prevalence it is 

important to implement the comparison circuit with low hardware complexity. Data Fix has developed a series 

of algorithms and programs that utilize token-based matching in conjunction with various fuzzy-matching 

functions. For a given block of source data each token is compared to records from the target dataset. The data 

comparison usually resides in the critical path of the components that are devised to increase system 

performance. For example caches and TLBs whose outputs determine the flow of succeeding operations in a 

pipeline. Therefore the circuit must be designed to have as low latency as possible as latency describes the time 

interval between stimulation and response. Besides of not having low latency, the components will be 

disqualified from serving as accelerators and overall performance of the whole system would be severely 

deteriorated. Recently computers employ error correcting codes to protect data and improve reliability. 

Complicated decoding procedure precede the data comparison which must elongates the critical path and 

exacerbates the complexity overhead. Thus it seems to be harder to meet the above design constraints. 

Numerous algorithms have been developed to allow for so-called ‘fuzzy’ matching, including soundex, NYSIIS, 

Jaro-Winkler, and many different types of character transposition functions. While these approaches are useful 

for matching specific fields they are not capable of accurately comparing larger blocks of data. 

The most recent solution for matching problem is the direct compare method. This method encodes the 

incoming data and then compared it with retrieved data that has been encoded as well. Therefore this method 

eliminates the complicated decoding procedure from critical path as it is more complex and consumes more 

time. While performing comparison method, it does not examine whether the retrieved data is exactly the same 

as the incoming data. Instead, it checks if the retrieved data resides in the error correctable range of the 

codeword corresponding to the incoming data. While performing checking, an additional circuit for computing 

hamming distance is necessary. Hamming distance provides the number of different bits between two code 

words  and  for computing hamming distance  saturate adder is considered as a building block. In addition SA 

forces its output not to be greater than the number of detectable errors by more than one. As ECC detects double 

and corrects single bit error and is represented in a systematic form in which data and parity parts are completely 

separated. 

In this brief we renovate SA based direct compare architecture to reduce latency and hardware complexity by 

resolving the above mentioned drawbacks. More specifically we consider the error correcting codes in 

systematic form while designing the proposed architecture and provides a low complexity processing element 

that computes the hamming distance faster. Therefore latency and hardware complexity are decreased when 

compared with SA based architecture.  

 The rest of the paper is organised as follows. Section 2 describes the previous works. Section 3 

describes the proposed architecture and section 4 describes the evaluation part. Finally conclusion is described 

in section 5. 

 

II. Previous Works 
This section describes the conventional decode and compare architecture and encode and compare 

architecture based on the direct compare method. For the sake of  concreteness, only tag matching in cache 

memory is discussed in this brief, but the proposed architecture can be applied to similar applications without 

loss of generality. 
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Fig 1. (a) Decode-and-compare architecture and (b) encode-and-compare architecture. 

 

A. Decode-and-compare architecture 

In decode and compare architecture the n-bit retrieved code word is first decoded to extract the original 

k-bit tag. The extracted k-bit tag is then compared with the k-bit tag field of the incoming address to determine 

whether the tags are matched or not as shown in Fig. 1(a). .As the retrieved codeword should go through the  

decoder before being compared with the incoming tag, the critical path is too long to be employed in a practical 

cache system designed for high-speed access. Since the decoder is one of the most complicated processing 

elements, in addition, the complexity overhead is not negligible. 

 

B. Encode-and-Compare Architecture 

Note that decoding is usually more complex and takes more time than encoding as it encompasses a 

series of error detection or syndrome calculation, and error correction. The implementation results support the 

claim. To resolve the drawbacks of the decode-and compare architecture, therefore, the decoding of a retrieved 

codeword is replaced with the encoding of an incoming tag in the encode-and-compare architecture More 

precisely, a k-bit incoming tag is first encoded to the corresponding n-bit codeword X and compared with an n-

bit retrieved codeword Y as shown in Fig. 1(b).  

The comparison is to examine how many bits the two code words differ, not to check if the two code 

words are exactly equal to each other. For this, we compute the Hamming distance d between the two code 

words and classify the cases according to the range of d. 

Let tmax and rmax denote the numbers of maximally correctable and detectable errors, respectively. The cases are 

summarized as follows. 

 
Condition Result 

1)d=0 X  matches Y exactly 

2)0 ≤ d ≤ tmax  X will match Y provided at the most tmax errors in Y are corrected 

3)tmax < d ≤ rmax Y has detectable but uncorrectable errors. 

4)rmax < d  X does not match Y 

 

Assuming that the incoming address has no errors, we can regard the two tags as matched if d is in 

either the first or the second ranges. In this way, while maintaining the error-correcting capability, the 

architecture can remove the decoder from its critical path at the cost of an encoder being newly introduced. Note 

that the encoder is, in general, much simpler than the decoder, and thus the encoding cost is significantly less 

than the decoding cost. Since the above method needs to compute the Hamming distance, presented a circuit 

dedicated for the computation. 

 

 
Fig 2. SA-based architecture supporting the direct compare method 
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The circuit shown in Fig. 2 first performs XOR operations for every pair of bits in X and Y so as to 

generate a vector representing the bitwise difference of the two code words. The following half adders (HAs) 

are used to count the number of 1’s in two adjacent bits in the vector. The numbers of 1’s are accumulated by 

passing through the following SA tree. In the SA tree, the accumulated value z is saturated to rmax + 1 if it 

exceeds rmax. More precisely, given inputs x and y, z can be expressed as follows: 

 

 
The final accumulated value indicates the range of d. As the compulsory saturation necessitates additional logic 

circuitry, the complexity of a SA is higher than the conventional adder. 

 

III. Butterfly Weight Accumulator (BWA) Architecture 
This section describes a new architecture that can reduce the latency and complexity of the data 

comparison by using the characteristics of systematic codes. In addition, a new processing element is presented 

in this brief to reduce latency and complexity further 

. 

A. Datapath Design for Systematic Codes 

In the SA-based architecture the comparison of two code words is invoked after the incoming tag is 

encoded. Therefore, the critical path consists of a series of the encoding and the n-bit comparison as shown in 

Fig. 3(a).  

 
Fig. 3. Timing diagram of the tag match in (a) direct compare method and (b) proposed architecture. 

 

However,did not consider the fact that, in practice, the ECC codeword is of a systematic form in which the data 

and parity parts are completely separated as shown in Fig. 4.  

 

 
Fig. 4. Systematic representation of an ECC codeword. 

 

As the data part of a systematic codeword is exactly the same as the incoming tag field, it is 

immediately available for comparison while the parity part becomes available only after the encoding is 

completed. Grounded on this fact, the comparison of the k-bit tags can be started before the remaining (n–k)-bit 

comparison of the parity bits. In the proposed architecture, therefore, the encoding process to generate the parity 

bits from the incoming tag is performed in parallel with the tag comparison, reducing the overall latency as 

shown in Fig. 3(b). 

 

B. Architecture for Computing the Hamming Distance 

The proposed architecture grounded on the data path design is shown in Fig. 5. The proposed 

architecture contains multiple butterfly-formed weight accumulators (BWAs) proposed to improve the latency 

and complexity of the Hamming distance computation.  
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Fig.5 : Proposed architecture optimized for systematic code words 

 

The basic function of the BWA is to count the number of 1’s among its input bits. It consists of 

multiple stages of Half Adders as shown in Fig. 6(a), where each output bit of a HA is associated with a weight. 

The HAs in a stage are connected in a butterfly form so as to accumulate the carry bits and the sum bits 

of the upper stage separately. In other words, both inputs of a HA in a stage, except the first stage, are either 

carry bits or sum bits computed in the upper stage. This connection method leads to a property that if an output 

bit of a HA is set, the number of 1’s among the bits in the paths reaching the HA is equal to the weight of the 

output bit. In Fig. 6(a), for example, if the carry bit of the gray-coloured HA is set, the number of 1’s among the 

associated input bits, i.e., A, B, C, and D, is 2. At the last stage of Fig. 6(a), the number of 1’s among the input 

bits, d, can be calculated as 

 
Since what we need is not the precise Hamming distance but the range it belongs to, it is possible to simplify the 

circuit. When rmax = 1, for example, two or more than two 1’s among the input bits can be regarded as the 

same case that falls in the fourth range. In that case, we can replace several HAs with a simple OR-gate tree as 

shown in Fig. 6(b). This is an advantage over the SA that resorts to the compulsory saturation expressed in (1). 

 
Fig. 6. Proposed BWA. (a) General structure and (b) new structure revised for the matching of ECC-protected 

data. Note that sum-bit lines are dotted for visibility 
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Note that in Fig. 6, there is no overlap between any pair of two carry-bit lines or any pair of two sum-

bit lines. As the overlaps exist only between carry-bit lines and sum-bit lines, it is not hard to resolve overlaps in 

the contemporary technology that provides multiple routing layers no matter how many bits a BWA takes. We 

now explain the overall architecture in more detail. Each XOR stage in Fig. 5 generates the bitwise difference 

vector for either data bits or parity bits, and the following processing elements count the number of 1’s in the 

vector, i.e., the Hamming distance. Each BWA at the first level is in the revised form shown in Fig. 6(b), and 

generates an output from the OR-gate tree and several weight bits from the HA trees. In the interconnection, 

such outputs are fed into their associated processing elements at the second level. The output of the OR-gate tree 

is connected to the subsequent OR-gate tree at the second level, and the remaining weight bits are connected to 

the second level BWAs according to their weights. More precisely, the bits of weight w are connected to the 

BWA responsible for w-weight inputs. Each BWA at the second level is associated with a weight of a power of 

two that is less than or equal to Pmax, where Pmax is the largest power of two that is not greater than rmax + 1.  

As the weight bits associated with the fourth range are all ORed in the revised BWAs, there is no need 

to deal with the powers of two that are larger than Pmax. For example, let us consider a simple (8, 4) single-

error correction double-error detection code. The corresponding first and second level circuits are shown in Fig. 

7. Note that the encoder and XOR banks are not drawn in Fig. 7 for the sake of simplicity. 

 

 
Since rmax = 2, Pmax = 2 and there are only two BWAs dealing with weights 2 and 1 at the second level. As the 

bits of weight 4 fall in the fourth range, they are ORed. The remaining bits associated with weight 2 or 1 are 

connected to their corresponding BWAs. Note that the interconnection induces no hardware complexity, since it 

can be achieved by a bunch of hard wiring. Taking the outputs of the preceding circuits, the decision unit finally 

determines if the incoming tag matches the retrieved codeword by considering the four ranges of the Hamming 

distance. The decision unit is in fact a combinational logic of which functionality is specified by a truth table 

that takes the outputs of the preceding circuits as inputs. For the (8, 4) code that the corresponding first and 

second level circuits are shown in Fig. 7, the truth table for the decision unit is described in Table I. Since U and 

V cannot be set simultaneously, such cases are implicitly included in do not care terms in Table I. 
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 C. General Expressions for the Complexity and the Latency 
The complexity as well as the latency of combinational circuits heavily depends on the algorithm 

employed. In addition, as the complexity and the latency are usually conflicting with each other, it is 

unfortunately hard to derive an analytical and fully deterministic equation that shows the relationship between 

the number of gates and the latency for the proposed architecture and also for the conventional SA-based 

architecture. To circumvent the difficulty in analytical derivation, we present instead an expression that can be 

used to estimate the complexity and the latency by employing some variables for the nondeterministic parts. The 

complexity of the proposed architecture, C, can be expressed as 

 
where CXOR, CENC, C2nd, CDU, and CBWA(n) are the complexities of XOR banks, an encoder, the second level 

circuits, the decision unit, and a BWA for n inputs, respectively. Using the recurrence relation, CBWA(n) can be 

calculated as 

 
where the seed value, CBWA(1), is 0. Note that when a + b = c, CBWA(a) + CBWA(b) ≤ CBWA(c) holds for all 

positive integers a, b, and c. Because of the inequality and the fact that an OR-gate tree for n inputs is always 

simpler than a BWA for n inputs, both CBWA(k) + CBWA(n –k) and C2nd are bounded by CBWA(n). The latency of 

the proposed architecture, L, can be expressed as 

 
where LXOR, LENC, L2nd, LDU, and LBWA(n) are the latencies of an XOR bank, an encoder, the second 

level circuits, the decision unit, and a BWA for n inputs, respectively. Note that the latencies of the OR-gate tree 

and BWAs for x ≤ n inputs at the second level are all bounded by [log2 n]. As one of BWAs at the first level 

finishes earlier than the other, some components at the second level may start earlier. Similarly, some BWAs or 

the OR-gate tree at the second level may provide their output earlier to the decision unit so that the unit can 

begin its operation without waiting for all of its inputs. In such cases, L2nd and LDU can be partially hidden by 

the critical path of the preceding circuits, and L becomes shorter than the given expression. 

 

IV. Proposed BWA Architecture 

The above BWA architecture describes the operation of (8,4)code. The same architecture with some 

extensions is used to built the proposed architecture. Proposed architecture describes the  analysis of 

(16,11),(24,18)and(40,33)code. The above mentioned (8,4) code takes only 8 bits of code words. Besides, the 

proposed architecture increases the bit length of the code words so that we can process more information. 

 

 
Fig 8(a): BWA For Parity of (16,11)code 
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Fig 8(b) : BWA For Incoming tag of (16,11)code 

The above figure shows the BWA architecture of (16,11) codeword with 11 bits of incoming tag information 

and 5 bits of parity information. Likewise we can draw architecture for (24,18) and (40,33). 

 

V. Evaluation 
For a set of four codes including the (31,25) code,Table 2 shows the latencies and hardware 

complexities resulting from three architectures:: 1)the decode-compare 2)the SA based direct compare and the 

3) proposed ones. When measured the metrics at the gate level first and then implemented the circuits in CMOS 

technology to provide more realistic results by deliberating some practical factors e.g. gate sizing and wiring 

delays. The latency is measured from th time when the incoming address is completely encoded. As the critical 

path starts from the arrival of the incoming address to a cache memory the encoding delay must be however 

included in the latency computation . The latency values in Table 2 are all measured in this way .Besides critical 

path delays in table 2 are obtained by performing post layout simulations and equivalent gate counts are 

measured by counting a two –input NAND gate as one. 

As shown in table 2 the proposed architecture is effective in reducing the latency as well as the 

hardware complexity even with considering  the practical factors .Note that the effectiveness of the proposed 

architecture over the SA based one in shortening the latency gets larger as the size of the code word increases 

.The reason is as follows .The latencies of the SA based architecture and the proposed one are dominated by 

SAs and HAs respectively. As the bit width doubles atleast one more stages of the SAs or HAs needs to be 

added.Sin ce the critical path of the HA consists of only one gate while that of SA has several gates,the 

proposed architecture achieves lower latency than its SA based counterpart,especially for long codewords. 

 

VI. Conclusion 

To reduce latency and hardware complexity a new architecture has been presented in this brief  for 

matching the data protected with an ECC.The proposed architecture examines whether the incoming data 

matches the stored data if a certain number of erroneous bits are corrected. To reduce latency the comparison of 

the data is parallelised with the encoding process that generates parity information.In addition an efficient 

processing architecture has been presented to further minimize the latency and complexity .The proposed 

architecture is effective in reducing the latency as well as the complexity . Though this brief focuses oly on tag 

matching in cache memory , the proposed method is applicable to diverse applications that need such 

comparison. 


